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Differences in the way human cerebral cortices fold have been correlated to health,

disease, development, and aging. However, to obtain a deeper understanding of the

mechanisms that generate such differences, it is useful to derive one’s morphometric

variables from the first principles. This study explores one such set of variables that arise

naturally from a model for universal self-similar cortical folding that was validated on

comparative neuroanatomical data. We aim to establish a baseline for these variables

across the human lifespan using a heterogeneous compilation of cross-sectional

datasets as the first step to extending the model to incorporate the time evolution of

brain morphology. We extracted the morphological features from structural MRI of 3,650

subjects: 3,095 healthy controls (CTL) and 555 patients with Alzheimer’s Disease (AD)

from 9 datasets, which were harmonized with a straightforward procedure to reduce

the uncertainty due to heterogeneous acquisition and processing. The unprecedented

possibility of analyzing such a large number of subjects in this framework allowed us to

compare CTL and AD subjects’ lifespan trajectories, testing if AD is a form of accelerated

aging at the brain structural level. After validating this baseline from development to

aging, we estimate the variables’ uncertainties and show that Alzheimer’s Disease is

similar to premature aging when measuring global and local degeneration. This new

methodology may allow future studies to explore the structural transition between healthy

and pathological aging and may be essential to generate data for the cortical folding

process simulations.

Keywords: cortical folding, aging, Alzheimer’s Disease, harmonization, baseline estimation

1. INTRODUCTION

Mapping the human brain development and aging longitudinally from a unique dataset is barely
impossible due to our extensive lifespan. Suppose one wants to understand the time evolution
of the brain morphology through the whole lifespan. In this case, it is mandatory to combine
multiple datasets and devise methods that allow a fair comparison among them. The recent advent
of large heterogeneous datasets (to ensure the legit results across several populations) and data
curation innovations allowed neuroscience to explore the brain’s changes on an enormous scale,
from functional data to structural studies. Here, we propose a novel methodology of combining
structural MRI from different acquisition sites and equipment, acknowledging their heterogeneity
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and providing insights about cortical folding during development
and aging, with a practical application of these results in
Alzheimer’s Disease, the most common dementia worldwide.
This effort is essential to provide experimental information about
the evolution span of the cortex morphology and build a cortical
folding theory.

In the past years, the study of cortical folding in humans
and other mammals was extensively promoted by the application
of translational science, open-access databases, and data science
tools which allowed the field to grow in multiple and sometimes
convergent directions (Madan and Kensinger, 2016; Llinares-
Benadero and Borrell, 2019; Mota et al., 2019; Essen, 2020). Due
to its biological background, cortical folding measurements have
been included in human brain structure analysis, discriminating
disease from healthy controls (Cao et al., 2017; Lamballais et al.,
2020), describing its correlation with cognition (Núñez et al.,
2020), and relation to aging (Hogstrom et al., 2013; Madan,
2021). Despite the lack of consensus defining a unique theory that
explains cortical folding on every scale. Mota and Herculano-
Houzel (2015) proposed a cortical folding model respected by
more than 50 mammals’ brain hemispheres. It predicts a power-
law relationship between cortical thickness (T), exposed (AE),
and total area (AT) (Equation 1)

T
1
2AT = kAα

E (1)

where α is the self-similarity index, a universal constant, with
a theoretical value of 1.25 and calculated as 1.305 (Mota and
Herculano-Houzel, 2015) when considering a heterogeneous
dataset of different species. It is an index of complexity, reflecting
how much detail in a real fractal pattern changes with the
scale at which it is measured. The constant k is dimensionless
and associated with conserved viscoelastic properties of cortical
matter. Following this equation, the usual geometrical variables
used to describe the cortex (T, AT , and AE) are not independent
in this model.

Wang et al. continued this study, validating the theory for
different groups of humans (Wang et al., 2016) in specific regions
of interest (Wang et al., 2019b), obtaining new evidence that
the cortex is indeed a self-similar structure. Wang et al. (2021)
showed that from this model one could derive a more natural set
of nearly independent morphological variables, K, S, and I, that
could be used to improve disease discrimination from regular and
typical structural changes of the brain, such as aging.

In this framework, the morphology of each cortex is expressed
as a point in a three-dimensional abstract space, with each
coordinate component corresponding to the log-value of an
independent morphometric variable (Wang et al., 2021). The use
of log-values guarantees that linear combinations of the basis
vectors correspond to power-law relations. Conversely, as long
as any new variables are expressible as power-laws, different but
equivalent sets of variables can, thus, be related to each other by
a change of Cartesian coordinate bases. As a starting point, we
use the log-values of the commonly morphometric variables, the
total area log10 AT , exposed area log10 AE and average thickness
log10 T

2. We then derive our new variables thusly: K = log10 k
(Equation 2) is a near-invariant quantity obtained by isolating k

in Equation (1). S (Equation 3), also dimensionless, encapsulates
the aspect of brain shape that changes more significantly across
cortices, and I (Equation 4), represents brain isometric volume
and carries the information about overall cortical size. Both are
derived from planes perpendicular to K, noting that K remains
unchanged when applying an isometric transformation on the
brain (a direction in which all areas scale equally) resulting in
I, and the perpendicular dimensionless vector S resultant from
K × I12. Those three variables combined may help distinguish
pathological events similar to age effects, such as AD.

K = log10 k = log10 AT −
5

4
log10 AE +

1

4
log10 T

2 (2)

S =
3

2
log10 AT −

3

4
log10 AE −

9

4
log10 T

2 (3)

I = log10 AT + log10 AE + log10 T
2 (4)

Baseline values (age-specific norm values) of those cortical
morphological variables and their inherent uncertainties over
the human lifespan were never defined due to methodological
limitations of combining multicenter studies of brain structural
images (Gronenschild et al., 2012; Fortin et al., 2018). However,
both are crucial for applied studies. Uncertainties determine
measuring limitations and allow a proper comparison between
different cohorts. Baseline values allow clinical applications and,
when necessary, simulations of healthy control data.Multi-center
studies have become more common in the last few decades
due to improved data sharing and the open science trend.
However, combining MRI data from multiple experiments is
not a trivial task. Part of these uncertainties is explained by
random errors, a direct consequence of the natural variance
within the species individuals, and the impossibility of replicating
the exact same condition over multiple data acquisitions.
Theoretically, these random errors are the same if one considers
multiple experiments.

Confounding components could be added when gathering
MRI images with differences in acquisition parameters,
acquisition equipment, and versions of the post-processing
software (Dickerson et al., 2008; Gronenschild et al.,
2012). Together, they add uncertainty to the data due to a
systematic effect, ultimately reflecting a systematic difference in
morphological variables calculated from different databases. In
practice, the natural random fluctuations are convoluted with the
uncertainty due to a systematic effect, enhancing the data spread.

Recently, a vast literature on primary morphological variables
from MR images (Schnack et al., 2010; Pomponio et al., 2020;

1One may understand this as similar to “Principal Component Analysis”, a change

of basis on the data representation, but using scaling considerations rather than

covariance eigenvectors to define the principal directions. The new set of variables

are combinations of the usual geometrical variables used to describe the cortex.

The principal component K is given by the power-law relation, which contains the

correlation between the variables. The variables S and I are orthonormal to K.
2One can also start requiring a plane perpendicular toK, impose the dimensionless

requirement, resulting in the dimensionless vector S, and find I from K × S.
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Bethlehem et al., 2022), and more complex ones (Fortin et al.,
2018), explored the limitations of compiling images acquired
with different scanners and protocols and its implication in
statistical analysis results. The suggested solution for these
limitations is a procedure called data harmonization, in which
there is an “explicit removal of site-related effects in multi-site
data” (Pomponio et al., 2020).

It is essential to add that one cannot, in general, distinguish
the natural variance in healthy human anatomy (σNatural)
and data acquisition random errors (σRandom). Also, it is
not possible to distinguish between the uncertainty due to
a systematic effect of the acquisition and the processing. In
other words, any measurement setup can include an additional
value at its final measure that is repeated for all measurements.
Here, the acquisition effects are due to differences in MR
structural images acquisition protocols and their parameters,
while processing errors are due to differences in the software
version, pipeline parameters, and computer used for processing
(Gronenschild et al., 2012). In Fortin et al. (2018) acquisition
and processing effects are described as scanner and site effects3.
However, in the case of the methodology of this manuscript,
it is impossible to quantify the contribution of this systematic
shift, from acquisition and processing, since we did not
compare processing or acquisition parameters by controlling
the other error sources. For this, one would need a diligent
procedure to track all differences between acquisition and
processing as well as multiple image of the same individual
for each sample. This manuscript deals only with the first
case, approximating the random errors due to acquisition and
processing for all samples using three subsequent structural
images of the subjects available only for one particular sample
(refer to Section Supplementary Material Section 2). The total
uncertainty associated with the variables (K, S, and I) and their
components is then summarized in Equation (5), the error
propagation formula with no correlation since we are treating
errors from uncorrelated sources by definition.

σ 2
X = σ 2

Natural + σ 2
Random + σ 2

Sample (5)

At which σX , is the total uncertainty for K, S, and I, σNatural
represents the so-called here Natural Fluctuation, σRandom, the
random variance that can be evaluated from the repeated
measures with the same subject at each Sample acquisition
and processing steps, and σSample, for the uncertainty due to a
systematic effect on each sample.

In this manuscript, we developed a simplistic harmonization
method that allows a multi-site analysis, determining K, S,
and I baseline values, their uncertainties, and the ratio of
changing rates through the years for cross-sectional images of
healthy controls. Although this work focused is these novel
morphological variables, we also provided the baseline of usual
morphological variables such as cortical thickness (T) and

3“Similar to batch effects in genomics (see Leek et al. (2010) for a review of batch

effects), we use the term scanner effects in neuroimaging to refer to unwanted

variation that is (1) non-biological in nature and (2) associated with differential

scanning equipment or parameter configurations. Because different imaging sites

use different physical scanners, site effects are one example of scanner effects”.

Gyrification Index (GI). A robust estimation framework of a
baseline time function is important to provide future clinical
studies with enough information to compare brain structure
trajectories in case of a pathological investigation. We then, as
a clinical application and extension of de Moraes et al. (2022)
and Wang et al. (2019b), verify if Alzheimer’s Disease (AD) is
similar to a premature accelerated aging brain in terms of the
independent morphological variables, K, S, and I, by comparing
their rates. Finally, we have determined the time evolution
of the self-similarity dimension α proposed in the Mota and
Herculano-Houzel (2015) model, interpreting all results within
the framework of this theory.

2. MATERIALS AND METHODS

Participants and data included in this analysis were either
acquired by the Instituto D’Or de Pesquisa e Ensino (IDOR),
Rio de Janeiro, Brazil; used at de Moraes et al. (2022) (approved
by the Hospital Copa D’Or Research Ethics Committee under
protocol number CAAE 47163715.0.0000.5249); shread datasets
included at Wang et al. (2016, 2019b), as the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu),
the Human Connectome Project (HCP), Information eXtraction
from Images (IXI), Nathan Kline Institute (NKI) and Open
Access Series of Imaging Studies (OASIS) Wang et al. (2016,
2019b); or from open-access databases, as Ultra-high field adult
lifespan (AHEAD) (Alkemade et al., 2020) and (Snoek et al.,
2021). The total number of subjects is 3,095 healthy controls
from 4 to 96 years old and 555 Alzheimer’s Disease subjects from
56 to 92 years old. Datasets’ demographics are summarized in
Table 1. AHEAD and HCPr900 only include age range instead of
the actual age due to local Ethics Committee rules. To overcome
the lack of an exact number, we assumed the interval’s mean age
as a reference.

To investigate the uncertainty due to a systematic effect during
image acquisition and variances in repeated measures performed
in the same conditions, we included the first 50 subjects from the
AOMIC ID1000 (Snoek et al., 2021), described in Table 1.

The structural images AHEAD, AOMIC ID1000, PIOP1, and
PIOP2 were processed in FreeSurfer v6.0.0 (Fischl, 2012) without
manual intervention at the surfaces (McCarthy et al., 2015). The
original project from IDOR images is longitudinal. Those images
in particular were processed with the longitudinal pipeline. The
FreeSurfer localGI pipeline generates the external surface and
calculates each vertex’s local Gyrification Index (localGI) (Schaer
et al., 2008). Values of Cortical Thickness, Total Area, Exposed
Area, and Local Gyrification Index were extracted with Cortical
Folding Analysis Tool (Wang et al., 2019a). We defined as
ROI the whole hemisphere, frontal, temporal, occipital, and
lateral lobes (based on FreeSurfer definition of lobes). The
lobes’ area measurements were corrected by their integrated
Gaussian Curvature, removing the partition size effect and
directly comparing lobes and hemisphere cortical folding, as
described in Wang et al. (2019b).

Datasets’ demographics, acquisition, and processing
information are summarized in Supplementary Material.
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TABLE 1 | Summary for each dataset.

Datasets Diagnostic N (F) Age (age range) [years]

ADNI Jack et al., 2010a
CTL 868 (445) 75 ± 6.5 (56; 96)

AD 542 (241) 75 ± 8 (56; 92)

AHEAD Alkemade et al.,

2020

CTL 100 (56) 42 ± 19 (24; 76)

AOMIC ID1000* Snoek

et al., 2021

CTL 50 (27) 23 ± 1.7 (20; 26)

AOMIC PIOP01 Snoek

et al., 2021

CTL 208 (120) 22 ± 1.8 (18; 26)

AOMIC PIOP02 Snoek

et al., 2021

CTL 224 (128) 22 ± 1.8 (18; 26)

HCP900r Glasser et al.,

2013

CTL 881 (494) 29 ± 3.6 (22; +36)

IDOR
CTL 77 (53) 66 ± 8.4 (43; 80)

AD 13 (8) 77 ± 6.1 (63; 86)

IXI-Guy’s CTL 314 (175) 51 ± 16 (20; 86)

IXI-HH CTL 181 (94) 47 ± 17 (20; 82)

IXI-IOP CTL 68 (44) 42 ± 17 (20; 86)

NKI Nooner et al., 2012 CTL 168 (68) 34 ± 19 (4; 85)

OASIS Marcus et al., 2010 CTL 312 (196) 45 ± 24 (18; 94)

TOTAL
CTL 3,095 (1,762) 46 ± 23 (4; 96)

AD 555 (249) 75 ± 8 (56; 92)

*Used only for repeated measures analysis.

Mean value ± SD. Diagnostic: CTL, Healthy control; AD, Alzheimer’s Disease. Details in

Supplementary Material.

2.1. Statistical Data Analysis
Multiple comparisons of means were made with ANOVA,
correlations between cortical folding independent variables, and
age estimated with Pearson r and post-hoc evaluations with Tukey
multiple comparisons of means, including comparisons within
Diagnostic groups. The statistical significance threshold was set
at α = 0.05, and multiple corrections (Bonferroni) were
applied when needed. The Healthy Control subjects are used as
a reference in the necessary normalization and harmonization
procedures. A standard linear regression was used to obtain the
self-similarity index α.

All analyses were done considering the whole cortical
hemisphere and the lobes (refer to Supplementary Material), as
most diseases imply local or non-uniform global structural
damage. Linear Mixed Models (LMM), standard linear
regression, and statistics derived from their results were
analyzed with RStudio (v1.4.1717 and R v4.1.1). The Bayesian
model comparison was developed in Python3 with the package
PyMC3. Harmonization and deaging codes are available at
https://zenodo.org/record/5879895 (de Moraes et al., 2021).

2.2. Harmonization
The data harmonization procedure is based on the time evolution
of the basic morphological variables Y = T, AT , or AE, modeled
as an exponential decay with the age tage. Using Linear Mixed
Models (LMM) in the log-linear scale, we are able to perform
a joint linear fit for each ROI, maintaining the same angular
coefficient a among all samples but different linear coefficient

bj,ROI according to Equation (6). We then subtracted the sample
shift, given by the linear coefficients bj,ROI), directly obtained
from the Sample RandomEffects (log10(Variable) ∼ Age×ROI+
(1|Sample :ROI)) in Healthy Controls. From this procedure, we
directly calculate the variables K, S, and I and determine for all
morphological variables of interest (also T, AT , AE, GI = At/Ae)
their baseline and uncertainties. This harmonization procedure
was validated as the most probable description of the data using
a Bayesian approach. This simple harmonization procedure is
equivalent to the approach presented in Bethlehem et al. (2022)
for the special case of a purely linear function.

log10Yj,ROI = atage + bj,ROI, for each ROI and each sample j

(6)

2.2.1. Bayesian Model Selection
In order to show that the harmonization procedure used was the
most suitable, one can compare it with other models to describe
the data. For example, the angular coefficient could also be a
random effect for the LMM, varying across the samples. Using
Bayesian model selection (Gregory, 2005), one can show that
the LMM used in this study is the most probable description of
the data.

Considering our dataset comprised by J samples where D(j) =
{d1(j), d2(j), · · · , dNj(j), } denotes the data of a morphological
variable in the j-th sample. The degree of belief in a model M
that describes a normally distributed data for each age is given by
the posterior probability:

P(M|D(j)) =
∫

1A(j)β

dA(j)βP(A(j)β |I)
N(j)
∏

i=1

1

σ(j)
√
2π

exp [yi(j) − µ(xi(j),A(j)β ]
2/2σ 2

(j) (7)

P(M|D) =
J

∏

j=1

∫

1A(j)β

dA(j)βP(A(j)β |I)
N(j)
∏

i=1

1

σ(j)
√
2π

exp [yi(j) − µ(xi(j),A(j)β )]
2/2σ 2

(j) (8)

The term µ(xi(j),A(j)β ) is given by the model M proposed to
describe the data, with the set {A(j)β} being the free parameters
of the model defined within a range 1A(j)β . A prior probability
P(A(j)β |I) is assigned for all free parameters reflecting the
prior knowledge about their values. The basic model of this
study assumes that the log of morphological variables follows
µ = ax + b(j), with the dispersion σ(j) for each sample.
Uninformative priors were used for the free parameters. This
integral can be easily done numerically using Python3 with
PyMC3 package or similar. The advantage of this approach
is that it naturally penalizes the insertion of unnecessary new
parameters avoiding over-fitting.

With multiple models Mi, one defines the odds as Oij =
p(Mi|D)
p(Mj|D) . As

∑

i p(Mi|D) = 1, the probability of the model M1 is
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given by:

p(M1) =
1

1+
∑

i Oi1

The alternative models considered by this study were: (i) µ =
ax + b(j), with the same dispersion σ(j); (ii) µ = a(j)x + b(j), with
the dispersion σ(j) for each sample; (iii) µ = a(j)x + b(j), with
the same dispersion σ(j) for each sample; (iv) we also tested the

simplest non-linear trendµ = cx2+ax+b(j), with the dispersion
σ(j) for each sample; we have found that the LMM used in the
study is the most probable. The code implementing this approach
is given by the authors.

It is important to note that all parameters calculated using the
LMM approach can be obtained in this framework by a slight
modification of Equation (8). Instead of marginalizing all the
parameters, by leaving one out, we obtain P(Aj1|D) which gives
directly the most probable value for the parameter Aj1 and its
credible region.

3. RESULTS

3.1. Multisite Harmonization
The analysis starts with data harmonization, a crucial step
to combining information from multiple sites allowing a fair
comparison among datasets. Figure 1 shows the result of the
harmonization procedure and its reflection on the primary
morphological variables. The LMMs are used to fit the data
assuming a single angular coefficient for all samples and different
linear coefficients due to the uncertainty caused by systematic
effect.We considered the variables’ trend with age linear based on
the correlation between T, AT , and AE with Age for the Healthy
Control group calculated from our data. There was a statistically
significant correlation for T (Pearson r = −0.6949; R2 = 0.48;
p < 0.001),AT (Pearson r =−0.4711; R2 = 0.22; p < 0.001), andAE

(Pearson r =−40.2005; R2 = 0.42; p < 0.001). The harmonization
was validated as the most probable description of this data using
the Bayesian approach.

3.2. Baseline, Rate Estimates, and
Alzheimer’s Disease Diagnostic
Discrimination
An immediate consequence of the harmonization is defining
a baseline value and its uncertainty for any morphological
variable considered in this work. The LMM provides quantitative
information about the trends of these variables through
age. The estimated uncertainties values are summarized in
Table 2, and summaries of linear mixed models are available
in Supplementary Material. The so-called Natural Fluctuation
(σNatural), representing human diversity, was considered the
Residual Standard Deviation of the models. The approximation
for the random component (σRandom) of the experimental error
derived from the multiple-image acquisition and processing
obtained using only 50 subjects from the AOMIC ID1000 dataset
is fully described in Supplementary Material. We considered
the Random Effect of the Sample category (intercept) Standard
Deviation as the uncertainty caused by a systematic effect

component of the experimental error (σSample). The σX is the
resultant uncertainty, composed of the previously described
errors, and is the square root sum of each one’s squared values.
Thereby, σK = 0.026 (4.9%), σS = 0.14 (1.6%), and σI =
0.091 (0.9%) with the corresponding fraction of their healthy
controls intercept.

Considering Alzheimer’s Disease, we used the baseline
(Figure 2) to verify if the age trends of K, S, and I are different
between the diseased and Healthy Control groups. We extracted
the rates of change for each variable and diagnostic, summarized
in Table 3 and displayed in Figure 3. The slopes were compared
with post-hoc pairwise mean comparisons.

There is a significant difference between Control and AD
slopes in K (pairwise comparison estimate−0.00090, p < 0.001), S
(pairwise comparison estimate 0.0013, p = 0.004), and I (pairwise
comparison estimate −0.0017, p < 0.001) as expected from
Figure 3. For K, the AD curve is virtually flat as if it had reached
a plateau, while for I, we see a constant reduction in brain
isometric volume, with a reduced intercept. Comparing the mean
values within AD and CTL, there is a significant difference for
K (pairwise comparison estimate 0.042, p < 0.001, representing
7.9% of the CTL mean) value, S (pairwise comparison estimate
−0.14, p < 0.001, 1.5%), and I (pairwise comparison estimate 0.11,
p < 0.001, 1.0%).

In order to complete the full description of the cortical
morphology within the framework established by the Mota and
Herculano-Houzel’s model, we separated the data from both
Health controls and patients with AD per decade and fitted the
self-similarity dimension α theorized to be 1.25. The result is
shown in Figure 4.

As most diseases imply local or non-uniform global structural
damage, we expanded the results of trajectories to the lobes.
We included ROI as a fixed effect in the linear mixed model
equation with harmonized variables: Variable ∼ Age ×
Diagnostic × ROI + (1|Sample :Diagnostic :ROI). Rates are
summarized in Supplementary Material. We discriminated AD
and healthy aging (CTL) K trends with pairwise comparisons
at the Frontal (p adj < 0.0001), Occipital (p adj < 0.0001),
Parietal (p adj < 0.0001), and Temporal lobes (p adj < 0.0001),
as expected from de Moraes et al. (2022). Despite the rates
being smaller for AD than CTL, the results mimic the whole
brain with Alzheimer’s Disease trajectories appearing as a plateau
during aging. The Frontal and Parietal lobe shows the least folded
pattern (K) in AD (within lobe comparison are described in
Supplementary Material). Also, there are significant differences
between S pairwise comparisons in CTL and AD at the Frontal
(p adj = 0.00035) and Parietal lobes (p adj < 0.0001); and among
I, between CTL and AD at the Frontal (p adj < 0.0001), Occipital
(p adj = 0.0031), Parietal (p adj < 0.0001), and Temporal lobes
(p adj < 0.0001)).

4. DISCUSSION

We analyzed a combination of datasets aiming to establish
the K, S, and I baseline through the human lifespan. The
suggested model included complexity at two levels: accounting
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FIGURE 1 | Basic morphological variables through age for Healthy Controls (A–C) raw data (C–F) after harmonizing, removing the estimated residual from the Linear

Mixed Model. This procedure results in the harmonized values of the novel morphological variables K, S, and I.
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TABLE 2 | Summary of the estimated uncertainty components for each

morphological variable of interest.

Variable
Natural

fluctuation

σacquisition + σprocessing
σX =

√

6σ
2
i

σNatural σRandom
a

σSample

T [mm] 0.1 0.019 0.085 0.13 (5.35%)

AT [mm2 ] 9,700 290 4900 10871.3 (10.78%)

AE [mm2 ] 2,900 70 530 2948.86 (7.62%)

GI 0.095 0.0069 0.11 0.14 (5.60%)

K 0.016 0.0017 0.021 0.026 (4.94%)

S 0.12 0.014 0.076 0.14 (1.56%)

I 0.082 0.0064 0.037 0.091 (0.87%)

aRepeat measure, mean standard deviation.

for heterogeneous acquisition and processing and heterogeneous
brain structures across healthy and disease subjects. The
hypothesis is that non-homogeneous methodology (inclusion
criteria, acquisition, and processing) implies more significant
uncertainty due to a systematic effect. Thereby, we suggested
a harmonization procedure that allows the comparison of
data from multisite reducing this kind of experimental error.
This result is innovative in its simplicity and focuses on
expanding our independent morphological variables knowledge.
The main caveat of our procedure is the impossibility of
accounting for all differences between the samples and using
this to define a universal harmonization according to each
acquisition protocol. Our method does not depend on one
reference sample or a gold standard definition. The removal
of the shift for each sample is carried out based on the
available healthy control data, which can always be added to
the analysis.

In other words, our method does not account for a possible
uncertainty due to a global systematic effect that could shift
all samples equally. By looking at the uncertainty in cortical
thickness estimation, our results are compatible with previous
work. Our findings of 0.02 mm (Table 2) of uncertainty in
cortical thickness are in agreement with a variability less than
0.03 mm found in a test-retest analysis by Han et al. (2006).
Moreover, they suggest that uncertainties of 0.15 mm across
platforms of manufacturers and 0.17 mm across field strength, at
this study, coupled with processing uncertainties and estimated
in 0.14 mm. A most recent study by Frangou et al. (2020)
suggests a Mean Inter-individual variation of 0.07 ± 0.06 mm
for hemisphere’s cortical thickness at all age ranges in the study
compared to 0.10 mm from our findings. This compatibility
suggests that the possible global systematic effect is close to 0;
thus, the harmonization could be regarded as being close to the
universal one.

The typical values for the K, S, and I independent variables
through the whole life span and their related uncertainties
were obtained by this study. These curves not only can be
used to discriminate pathological from healthy aging in cross-
sectional harmonized data but also are a powerful tool to
morphologically describe non-typical cortex. Estimating the
uncertainties is crucial to constructing the baseline curves and

was carefully developed by this study. We estimated three types
of uncertainties with linearmixedmodels and repeatedmeasures:
the uncertainty due to a systematic effect (combination of
multiple datasets), repeated measures, and the natural variation
in the human species. The error from acquisition and processing
were coupled at the individual and sample levels. We expect
future studies to disassociate the uncertainties in detailed
factors (test-retest analysis, across platforms, field strengths, and
acquisition parameters with the same sample of subjects) to
measure morphological variables of interest better.

We have demonstrated the usage of the baseline curves by
analyzing AD data. In terms of K, a measure of axonal tension,
the AD curve is virtually flat as if it had reached a plateau of
reduced brain tension. Compared with Healthy Controls, this
plateau seems to be the same experienced by the oldest subjects.
Interpreting in terms of the Mota and Herculano-Houzel cortex
model, AD can be regarded as a form of accelerated aging
from the axonal tension perspective. On the other hand, the
evolution of S, I, and even the self-similarity dimension α suggest
that the AD cortex is not morphologically similar to the health
one, with a very different shape, isometric volume, and time
evolution. However, it is interesting to note that both S and I
converge to a value compatible with the oldest health subjects.
In the future, correlating these results with the elasto-mechanic
properties of the AD cortex will help to understand better the
physical limits of the Mota and Herculano-Houzel model and
expand it theoretically.

A significant result that could only be achieved by combining
multiple data is the value of the self-similarity dimension α

through the human lifespan and its evolution through atypical
conditions. We extended the analysis in de Moraes et al. (2021)
and verified how the slope α behaves with healthy aging. We
found that the slope is compatible with the theoretical prediction
for subjects between 20 and 60 years old. Defining this range
of applicability of the theory is essential to understanding the
period of life in which the model’s basic assumptions are still
valid. Thereafter, we confirmed the findings that the slope escapes
the model after 60 years old, diverging from the theoretical
value of 1.25. Before 15 years old, we have found a hint that
the slope is also inferior to 1.25, in disagreement with the
model. In addition, a non-linear pattern is suggested by the K
baseline function before 20 years. One of the leading hypotheses
to explain the deviation of the measured α from the expected
value in both cases (before 15 and after 60 years old) is the
breakdown of the homogeneity on the cortical surface. The
suggestion of a homogeneity breakdown makes it particularly
interesting to further study AD in the age range compatible
with 1.25. Understanding the regimes outside the model is
a fundamental step toward the theoretical understanding of
cortical folding. Coupled with analysis of neuropathologies
such as AD, these empirical results improve the cortical
folding theory.

More than discriminating between disease and healthy
subjects, understanding the pathology trajectory is vital to
defining landmarks, indicating future injury, and collaborating
to develop efficient treatment. Notably, in Alzheimer’s Disease
and its prodromal form, Mild Cognitive Impairment, subsequent
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TABLE 3 | Changing rate per year for each variable (after harmonization) and diagnostic.

Diagnostic CTL AD

T [mm] (−440 ± 6) ×10−5 mm/year (−0.18%) (−14 ± 4) ×10−4 mm/year(−0.062%)

AT [mm2 ] (−240 ± 5) mm2/year (−0.24%) (−9. ± 4)×10 mm/year (-0.096%)

AE [mm2 ] (−41 ± 1) mm2/year (−0.11%) (−4 ± 1) ×10 mm/year (−0.1%)

GI (−350 ± 5)×10−5/year (−0.13%) (3 ± 4) ×10−4/year (0.012%)

K (−860 ± 9) ×10−6/year (−0.16%) (3 ± 6) ×10−5/year (0.0059%)

S (160 ± 6) ×10−5/year (0.018%) (3 ± 5) ×10−4/year (0.0029%)

I (−310 ± 4) ×10−5/year (−0.03%) (−14 ± 3) ×10−4/year (−0.013%)

Rate [%] was calculated as the fraction of the mean value.

Mean value ± SD. Rate [%] was estimated as the fraction of the mean value.

FIGURE 2 | Cortical folding variables (A) K, (B) S, and (C) I through age for Healthy Controls after harmonizing in the primary morphological variables T, AT , and AE

(removing the estimated residual from the Linear Mixed Model).
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FIGURE 3 | Fitted values extracted from the linear regression model after data harmonization. Bars represent the 95% CI. Complete summary of linear models in

Supplementary Material. (A) Concerning K, Alzheimer’s Disease (AD) has a shallow slope, meaning small changes with Age. Compared to healthy controls, AD

values of K are almost constant and similar to older subjects (AD slope p < 0.0001 and CTL slope p < 0.0001; pairwise comparison estimate −0.00090, p < 0.001).

(B) For S, the AD and CTL patterns have similar intercepts, but statistically different slopes (AD slope p = 0.004 and CTL slope p < 0.0001; pairwise comparison

estimate 0.0013, p = 0.004). (C) For I, that reflects brain volume, CTL has a decreasing volume with aging, while AD has a smaller slope (AD slope p < 0.0001 and

CTL slope p < 0.0001; pairwise comparison estimate −0.0017, p < 0.001). The curves for the AD group were extended to early ages to ease the comparison.

phases of damage may start at least 20 years before the
diagnosis (Frozza et al., 2018). The structural damage is an
initial state than cognitive alterations, such as memory and
clinical functions (Jack et al., 2010b). As pointed out by Fjell
et al. (2014), healthy aging also contributes to reductions
in cortical thickness and understanding the overlap between

healthy aging and pathological aging triggers is crucial to
segregating both events. Nevertheless, the possible similarity
of structural damage in Alzheimer’s Disease and aging is
explored by multiple previous studies (Pacheco et al., 2015;
Gutierrez Becker et al., 2018; Huizinga et al., 2018; Wang et al.,
2021). We hypothesize that the structural changes due to AD
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FIGURE 4 | Slope α with 95% CI derived from the Cortical Folding model from Mota and Herculano-Houzel through age for Healthy Controls and AD subjects. Data

points from (0, 5] and [95, 100] years old were omitted due to the reduced data. The numbers on top of each point indicate the number of subjects at each interval.

are reflected in measures of the brain’s global structure and
shape. Therefore, cortical folding derived variables K, S, and I
are sensitive to this perturbation. We verified this hypothesis by
analyzing the difference in aging trajectories between healthy and
pathological brains.

At a more refined grain scale, the lobes, the results are
compelling to confirm (Wang et al., 2021) suggestion that K,
S, and I together would be a powerful tool to discriminate
similarly but distinct events, such as AD and aging. In this
case, the difference between events is in the cortical structure’s
changing velocity or rate. Then with the rates for K, S, and
I at the lobes, we could explore whether a lobe would unfold
faster. For AD, the temporal lobe has the biggest unfolding
(K) and shrinking rate (I), while healthy aging is more
aggressive in the Parietal lobe, followed by the temporal and
frontal lobes.

The natural expansion of this study is to include Mild
Cognitive Impairment (MCI) subjects. As seen before, the MCI is
an intermediary step between healthy aging andAD in the disease
progression, cognitive impairment, and structural changes (Jack
et al., 2010b; Frozza et al., 2018; de Moraes et al., 2022). Also,
we intend to continue this study by applying this approach to
a longitudinal dataset composed of MRI structural images with

MCI subjects that eventually convert to AD and compare to the
cortical folding components of non-converters. Including this
data would allow having a more reasonable aging trajectory by
having the transition period from healthy aging to pathological
aging. Furthermore, we expect to explore K, S, and I function
with age for the age range comprising newborns to 25 years
old in future studies. This study will help better understand
the value of the slope α at this age, revealing if there is an
inflection point that can be connected to the development/aging
transition in human brains (Davis, 2021), such as suggested by
the data.

This study successfully achieved its goal of combining
multiple samples with a simplistic harmonization procedure
that adjusts K, S, and I values for the 3,650 subjects.
Hereafter we estimated K, S, and I typical values and aging
rates to discriminate against Alzheimer’s Disease subjects
based on their changing rates. To validate the proposed
methodology, we analyzed results for Cortical Thickness, which
are in concordance with previously published findings. At
a glance, the significant differences found in aging rates
for the cross-sectional data are suggestive that a brain with
Alzheimer’s Disease has premature and accelerated aging in terms
of morphology.
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